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Abstract: In this paper, we tend to propose an approximate multiplier that's high speed yet energy efficient. The approach is to 

round the operands to the closest exponent of 2. This manner the procedure intensive a part of the multiplication is omitted up 

speed and energy consumption at the worth of little error. The proposed approach is applicable to each signed and unsigned 

multiplications. we tend to proposed three hardware implementations of the approximate multiplier that features one for the 

unsigned and 2 for the signed operations. The efficiency of the proposed multiplier is evaluated by examining its performance 

with those of some approximate and exact multipliers using totally different style parameters. Additionally, the efficiency of the 

proposed approximate multiplier is studied in two image process applications, i.e., image sharpening and smoothing. 

Index Terms - Accuracy, approximate computing, energy efficient, error analysis, high speed, multiplier. 

  

1. INTRODUCTION 

 

Energy minimization is one among the most style 

necessities in any electronic systems, particularly the 

moveable ones like mobile phones, tablets, and totally 

different gadgets [1]. It’s extremely desired to realize this 

minimization with least performance (speed) penalty [1]. 

Digital signal processing (DSP) blocks are key elements 

of those moveable devices for realizing varied 

multimedia system applications. The procedure core of 

those blocks is that the arithmetic logic unit wherever 

multiplications have the best share among all arithmetic 

operations performed in these DSP systems [2]. 

Therefore, rising the speed and power/energy-efficiency 

characteristics of multipliers plays a key role in rising the 

efficiency of processors. Many of the DSP cores 

implement image and video process algorithms wherever 

final outputs are either pictures or videos made for human 

consumptions. This truth permits us to use 

approximations for raising the speed/energy efficiency. 

This originates from the restricted sensory activity skills 

of individuals in perceive a picture or a video. 

Additionally to the image and video process applications, 

there are different areas wherever the truth of the 

arithmetic operations isn't crucial to the performance of 

the system (see [3], [4]) .The power to use the 

approximate computing provides the designer with the 

ability of creating tradeoffs between the accuracy and 

also the speed additionally as power/energy consumption 

[2], [5]. Applying the approximation to the arithmetic 

units are often performed at completely different style 

abstraction levels together with circuit, logic, and design 

levels, additionally as algorithmic rule and software 

system layers [2]. 

The approximation could also be performed by taking 

completely different techniques like permitting some 

temporal order violations (e.g., voltage over scaling or over 

clocking) and performance approximation strategies (e.g., 

modifying the Boolean perform of a circuit) or both of them 

[4], [5]. within the class of perform approximation 

strategies, variety of approximating arithmetic building 

blocks, like adders and multipliers, at completely different 

style levels are instructed (see [6]–[8]). During this paper, 

we tend to concentrate on proposing a high-speed low 

power/energy however approximate multiplier applicable 

for error resilient DSP applications. The proposed 

approximate multiplier, that is additionally space efficient, 

is built by modifying the standard multiplication approach at 

the algorithmic program level assumed as rounded input 

values. We tend to call as this rounding-based approximate 

(Roba) multiplier. The proposed multiplication approach is 

applicable to each signed and unsigned multiplications that 

3 optimized architectures are given. The efficiencies of 

those structures are assessed by examining the delays, 

power and energy consumptions, energy-delay product 

(EDPs), and areas with those of some approximate and 

correct (exact) multipliers. The contributions of this paper 

will be summarized as follows: 

1) Presenting a novel theme for Roba multiplication by 

modifying the standard multiplication approach;  

2) describing three hardware architectures of the proposed 

approximate multiplication theme for sign and unsigned 

operations. The remainder of this paper is organized as 
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follows. Section II discusses the associated works regarding 

approximate multipliers. The proposed theme of the 

approximate multiplication, its hardware implementations, 

and its accuracy results are given in Section III. In Section 

IV, the characteristics of the proposed approximate 

multiplier compared with the exact and approximate 

multipliers, and additionally its effectiveness in image 

process applications studied. Finally, the conclusion is 

drawn in section V. 

2. LITERATURE SURVEY 

 

In this section, a number of the previous works 

within the field of approximate multiplier are briefly 

reviewed. In [3], an approximate multiplier and an 

approximate adder found a method named broken-array 

multiplier (BAM) was the multiplier. By applying the BAM 

approximation methodology of [3] to the standard modified 

Booth multiplier factor, an approximate signed Booth 

multiplier was given in [5]. The approximate multiplier 

provided power consumption savings kind 28th to 58.6% 

and space reductions from 19.7% to 41.8% for various word 

lengths as compared with multiplier Booth 31. Kulkarni et 

al. [6] advised an approximate multiplier consisting of a 

variety of 2×2 inaccurate building blocks that saved 31.8%–

45.4% over an exact multiplier. An approximate signed 32-

bit multiplier for speculation functions in pipelined 

processors was designed in [7]. it had been two hundred 

times quicker than a full-adder-based tree multiplier 

whereas having a chance of error of around 14%. In [8], an 

error-tolerant multiplier, that computed the approximate 

result by dividing the multiplication into one exact and one 

approximate part, was introduced, in which the accuracies 

for various bit widths were reportable. In the case of a 12-bit 

multiplier, a power saving of over 50% was reported. In [9], 

two approximate 4:2 compressors for utilizing in a very 

regular Dadda multiplier were designed and analyzed. 

 

The utilization of approximate multipliers in image 

process applications that results in reductions in power 

consumption, delay, and semiconductor unit count 

compared with those of a particular multiplier style has been 

mentioned within the literature. In [10], an accuracy-

Configurable multiplier design (ACMA) was advised for 

error-resilient systems to extend its output, the ACMA 

created use of a method referred to as carry-in prediction 

that worked supported a precipitation logic. Compared with 

the precise one, the projected approximate multiplication 

resulted in nearly 50% reduction within the latency by 

reducing the important path. Also, Bhardwaj et al. [11] had 

given an approximate Wallace tree multiplier (AWTM). 

Again, it invoked the carry-in prediction for the reduction of 

the vital path. In this work, AWTM was utilized in a time 

period benchmark image application showing concerning 

40% and 30% reductions within the power and space, 

severally, without any image quality loss compared with the 

case of using a multiplier Wallace tree multiplier factor 

(WTM) structure. In [12], approximate unsigned 

multiplication and division supported an approximate log of 

the operands are proposed. Within the proposed 

multiplication, the summation of the approximate 

logarithms determines the results of the operation. Hence, 

the multiplication is simplified to some shift and adds 

operations. In [13], a technique for increasing the accuracy 

of the multiplication approach of [12] was it had been. it 

absolutely was it was the decomposition of the input 

operands. This methodology significantly improved the 

common error at the worth of increasing the hardware of the 

approximate multiplier factor by based on twice. 

 

In [16], a dynamic section methodology (DSM) is given, 

that performs the multiplication operation on an m-bit 

segment starting from the leading one bit of the input 

operands. A dynamic vary unbiased multiplier factor 

(DRUM) multiplier, that selects an m-bit bit of ranging from 

the leading one little bit of} the input operands and sets the 

smallest amount significant bit of the truncated values to 1, 

has been proposed in [17]. In this structure, the truncated 

values are increased and shifted to left to come up with the 

final output. In [18], an approximate 4×4 WTM has been 

projected that uses an inaccurate 4:2 counter. Additionally, 

miscalculation correction unit for correcting the outputs has 

been advised. To construct larger multipliers, this 4×4 

inaccurate Wallace multiplier may be utilized in an array 

structure. Most of the previous proposed approximate 

multipliers are depends on either modifying the structure or 

complexness reduction of a specific accurate multiplier. In 

this paper, similar to [12], we have a tendency to propose 

activity the approximate multiplication through simplifying 

the operation. The distinction between our work and [12] is 

that, though the principles in each works are nearly similar 

for unsigned numbers, the mean error of our proposed 

approach is smaller. Additionally, we propose some 

approximation techniques once the multiplication is 

performed for signed numbers. 

3. PROPOSED APPROXIMATE MULTIPLIER 

 

   3.1Multiplication rule of Roba multiplier  

 

The main plan behind the proposed approximate 

multiplier is to create use of the benefit of operation 

whenever the numbers are 2 to the power n (2n). To 

elaborate on the operation of the approximate multiplier 

first, allow us to denote the rounded numbers of the input 

of A and B by Ar and Br, individually. The multiplication 

of A by B is also rewritten as 

 

A × B = (Ar − A) × (Br − B) +Ar × B + Br × A − Ar × 

Br.                    (1) 

 

The key observation is that the multiplications of 

Ar ×Br, Ar ×B, and Br ×A could also be enforced simply 

by the shift operation. The hardware implementation of 
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(Ar −A) 8× (Br −B), however, is very complicated. the 

weight of this term within the final result, that depends on 

variations of the precise numbers from their rounded 

ones, is usually little. Hence, we tend to propose to omit 

this part from (1), serving to modify the multiplication 

operation. Hence, to perform the multiplication method, 

the subsequent expression is used: 

 

A×B ∼ = Ar × B+ Br × A− Ar ×Br.                                                       

(2) 

 

 

Fig. 1. Block diagram for the hardware implementation 

of the proposed multiplier 

 

Thus, one will perform the multiplication operation 

using three shift and two addition/subtraction operations. 

during this approach, the closest values for A and B within 

the kind of 2n ought to be determined. When the worth of A 

(or B) is adequate the 3 × 2p−2 (where p is an absolute 

positive number larger than one), it's 2 nearest values within 

the kind of 2n with equal absolute variations that are 2p and 

2p−1. Whereas each values result in constant impact on the 

accuracy of the proposed multiplier, choosing the larger one 

(except for the case of p = 2) ends up in a smaller hardware 

implementation for determining the closest rounded worth, 

and hence, it is considered in this paper. 

 

It originates from the actual fact that the numbers 

within the sort of 3×2p−2 are thought of as don't care in 

each rounding error up and down simplifying the method, 

and smaller logic expressions is also achieved if they're 

utilized in the rounding error up. The main exception is for 

3, that during this case, two is taken into account as its 

nearest price within the proposed approximate multiplier. It 

ought to be noted that contrary to the previous work 

wherever the approximate result's smaller than the precise 

result, the final result calculated by the Roba multiplier is 

also either larger or smaller than the precise result counting 

on the magnitudes of Ar and Br compared with those of A 

and B, severally. Note that if one amongst the operands (say 

A) is smaller than its corresponding rounded price whereas 

the opposite operand(say B) is larger than its corresponding 

rounded value, then the approximate result are going to be 

larger than the precise result. This can be due to the actual 

fact that, in this case, the multiplication result of (Ar −A) × 

(Br −B) are going to be negative. Since the distinction 

between (1) and (2) is exactly this product, the approximate 

result becomes larger than the precise one. Similarly, if each 

A and B is larger or each is smaller than Ar and Br, then the 

approximate result are going to be smaller than the precise 

result. Finally, it ought to be noted the advantage of the 

proposed Roba multiplier exists just for positive inputs as a 

result of within the two’s complement illustration, the 

rounded values of negative inputs aren't within the kind of 

2n. Hence, we advise that, before the multiplication 

operation starts, absolutely the values of each inputs and 

therefore the output sign of the multiplication result depends 

on the inputs signs be determined and so the operation be 

performed for unsigned numbers and, at the last stage, the 

correct sign be applied to the unsigned result. The hardware 

implementation of the proposed approximate multiplier is 

explained next.  

 

3.2 Hardware Implementation of Rounding based 

approximate multiplier 

 

Primarily based on (2), we provide the block 

diagram for the hardware implementation of the proposed 

multiplier in Fig. 1 wherever the inputs are depicted in 

two’s complement format. First, the signs of the inputs are 

determined, and for every negative value, the absolute value 

is generated. Next, the rounding block extracts the closest 

price for every exact value within the type of 2n. It ought to 

be noted that the bit dimension of the output of this block is 

n (the most significant little bit of a price of an n-bit range 

within the two’s complement format is zero). To find the 

closest price of input A , we have a tendency to use the 

subsequent equation to see every output little bit of the 

rounding error block: 

 
 

The output of this adder and therefore the results of 

Ar × Br are the inputs of the subtractor block whose output 
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is that the definite quantity of the output of the proposed 

multiplier as a result of Ar and Br are within the style of 2n, 

the inputs of the subtractor might take one amongst the 3 

input patterns .The corresponding output patterns are shown 

.The kinds of the inputs and output influence us to conceive 

a fundamental circuit supported the subsequent expression:  

 

Out = (P XOR Z) AND ({(P << 1) XOR (P XOR Z)} or {(P 

AND Z) << 1})         (4) 

 

Where P is Ar × B + Br × A and Z is Ar × Br. The 

corresponding circuit for implementing this expression is 

smaller and quicker than the standard subtraction circuit. 

Finally, if the sign of the final multiplication result ought to 

be negative, the output of the subtractor is negated within 

the sign set block. To negate values, that have the two ought 

to complement illustration, the corresponding circuit 

supported ~ X + 1 to be used.  

 

To extend the speed of negation operation, one 

could skip the incrimination method within the negating 

section by acceptant to its associated error. As are seen later, 

the significance of the error decreases because the input 

widths will increase. In this paper, if the negation is 

performed precisely (approximately), the implementation is 

named signed Roba (Roba) number [approximate S-Roba 

(AS-Roba) multiplier]. Within the case  wherever the inputs 

are forever positive, to extend the speed and lower the 

consumption of power, the sign detector and sign set blocks 

are omitted from the design, providing us with the design 

referred to as unsigned ROBA  (U-ROBA) number. during 

this case, the output dimension of the rounding block is n+1 

wherever this bit is decided depending on  

Ar[n]=A[n−1]•A[n−2].  This can be as a result of within the 

case of unsigned 11x ...x (where x denotes doesn’t care) 

with the bit dimension of n, its rounding value is 10…0 with 

the bit dimension of n + 1. Therefore, the input bit 

dimension of the shifters is n + 1. However, as a result of 

the maximal quantity of shifting is n − 1, 2n is taken into 

account for the output bit dimension of the shifters. 

 

 

3.3 Accuracy of ROBA Multiplier in this section 

 

Inaccuracies of the three architectures mentioned 

are considerable. The inaccuracies of the U-Roba number 

and S-Roba number, that originate from omitting the term 

(Ar−A)× (Br−B) from the correct multiplication of A× B, 

are identical. Hence, the error is 

                                               

 
Assuming Ar and Br are equating to 2n and 2m, 

identically, the most error happens once A and B are 

equating to 3×2n and 3×2m, severally. In this case, each Ar 

and Br has the most arithmetic distinction from their 

corresponding inputs. Thus 

 

 
In the case of the AS-Roba multiplier factor, the 

error includes a term because of the approximate negation 

(approximate negation). Therefore, within the worst case 

(where each inputs square measure negative), one could 

acquire the most error form. 

 
 

Compared with (5), the second term comes from the 

negation approximation obtained from the following 

relation: 

 
 

Hence, within the case wherever a minimum of one 

amongst the inputs is negative, the AS-Roba number error is 

larger than that of the two other Roba multiplier types. Also, 

once each of the inputs area unit negative, though the final 

result are going to be positive, one still has to negate the 

negative inputs. Depending on this formulation, one 

amongst the inputs is −1, the most error that is 100 %, 

occurs. To minimize the most error of this case, one could 

use a detector to detect the case whenever one amongst the 

inputs is −1, and bypass the multiplication method and 

generate the output by negating the opposite input. It’s clear 

that this solution has some delay and power consumption 

overhead.  

 

Additionally to the most error, the incidence rate of 

error condition is obtained because the magnitude relation 

of the maximum error occurrences to the overall number of 

outputs. This error rate is another accuracy measure 

parameter.  Here, all the input combinations are assumed to 

occur. Within the case of n-bit U-ROBA multiplier, there 

are n − 1 cases for every input wherever the rounded worth 

has the most distinction to the particular number. The error 

happens once these numbers are the input operands. This 

corresponds to (n −1)2 cases. Within the case of S-ROBA 

multiplier, for every operand, there are 2(n−2) cases 

wherever the rounded operands has the most error. Hence, 

the same as the U ROBA multiplier, most the error happens 

once each of the rounded operands have the error that 

creates the quantity of maximum error incidence adequate 

(2(n −2))2. Finally, within the case of the AS-ROBA 

multiplier, as mentioned before, the most error happens 

once one amongst the inputs is −1. Hence, the quantity of 

most error occurrences can be equal to 2×2n−1 −1 (2 n −1).  

 

On the other hand, in the cases of the U-Roba and S-

Roba multipliers when the absolute value of the input 

operand of the multiplier is within the variety of the 2m, the 

output results of the Roba multiplier is exactly noticed. 
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Hence, the numbers of correct outputs within the cases of 

the U-Roba multiplier factor and S-Roba multipliers are 

2(n+1)2n−(n+1)2 and n2n+2−4n2, respectively. Within the 

case of the AS-Roba multiplier factor, when both inputs are 

positive, the multiplier behaves kind of like the other 2 

Roba multiplier factor architectures, and hence, when one of 

the inputs is within the variety of 2m, the output is an exact 

one. In addition, there are other combination’s that results in 

the correct output. One example of such cases is (A − AR) 

(¯B − ¯B R) + A = 1. Analytically finding all the 

combination’s with correct (exact) output is too difficult, 

and hence for the AS-Roba multiplier we have a tendency to 

use the boundary of the correct output range that's  equal to  

n2n − n2.  

 

4. RESULTS AND DISCUSSION 

 

4.1 Hardware Implementation 

 

To evaluate the efficiency of the proposed multiplier, 

the three Roba multiplier implementations were compared 

with some approximate and actual multipliers. Baugh 

Woolley supported Wallace tree design and Wallace (as an 

explicit unsigned) multipliers were chosen as exact 

multipliers. Also, within the case of approximate 

multipliers, DSM8 [16], DRUM6 [17], and HAAM [18] 

were chosen. Since [12] has not provided any hardware 

implementation, we excluded it from this a part of the study. 

The multipliers were designed with the help of VHDL then 

synthesized with the help of Synopsys design compiler with 

the choice of synthesizing with the minimum delay 

objective beneath a 45-nm technology [14]. Next, the post 

layout style parameters of the selected multipliers were 

extracted by exploiting Cadence system-on-chip encounter. 

The extracted style parameters of those multipliers are 

reported .It has to be mentioned that in this paper, the 

voltage was1.1 V (based on the Nan Gate 45-nm technology 

[14]), whereas the frequency was chosen by the use of 

reported delay for every multiplier. 

 

The results reveal that the minimum delay, energy, and 

ADP belong to the U-Roba whereas DSM8 has the simplest 

power consumption and DRUM8 has the minimum space 

and PDA. The delay, energy, and ADP of the U-Roba are 

having 22% (15%), 5% (13%), and 26% (25%) less than to 

those of DSM8 (DRUM6). In distinction, the power (area 

and PDA) of DSM8 (DRUM6) is having 18% (57% and 

51%) lower. Also, the negation operation results in larger 

style parameters for S-Roba and AS-Roba compared with 

those of U-Roba, DSM8, and DRUM6. Also, HAAM has 

the worst style parameters because of its array structure. 

 

The results additionally indicate that the precise 

multipliers have considerably larger style parameters 

compared with those of the proposed U-Roba and AS-Roba. 

Within the case of the S-Roba multiplier, the delay is, on 

average, 3.4% larger than that of the Baugh Woolley 

multiplier because of the exact negation operation. Apart 

from the delay parameter, other style parameters of the S-

Roba multiplier are much better than those of Bough 

Woolley multiplier. On the other hand, the power, area, 

energy, EDP, and organizer of the S-Roba multiplier, are 

having 47%, 32%, 45%, 43%, and 63%, respectively, less 

than those of the  Woolley multiplier. 

 

Image Processing Applications    

 

To evaluate the feasibleness of the proposed 

multiplier in real applications, we tend to compare the 

performances of the ROBA number architectures in two 

image process applications of smoothing and sharpening 

with those of the corresponding precise ones. For 

sharpening, two totally different ways were invoked. Within 

the first one, every element of the sharp image was 

extracted from [15].    

                    

 
 

   
∑ ∑        

 

    

 

    

                            

                          

 

Where the X (i, j) [Y (i, j)] indicates the pixel of 

the i th row and j th column of input (output) image and 

Masksharpening1is an n × n coefficient sharpening matrix 

given by 

 

 
 

 

In the second method, each output pixel is 

determined from 

 

        
 

   
∑ ∑        

 

    

 

    

                              
                                                 

 

 

Where the sharpening matrix is [15] 
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In the case of MaskSharpening,1, all the values of the 

matrix are positive, and hence, all the three Roba multiplier 

architectures result in identical where as within the case of 

the Masksharpening,2, each S-Roba and AS-Roba 

multipliers is also utilized resulting in completely different 

image qualities. The sharpened pictures for the second 

approach once the precise multiplier factor, S-ROBA 

multiplier factor, and AS-ROBA multiplier factor were used 

.The betterness of the sharpening method might not be 

simply recognized by human eyes. Next, we tend to report 

the height signal/noise ratio (PSNR) and mean structural 

similarity index metric (MSSIM [20]) of the sharpened 

photos for the two sharpening matrices. It ought to be noted 

that the PSNRs are determined with the sharpened image 

obtained with the help of exact multipliers to the sharpened 

image obtained with the help of the approximate multiplier 

structures. Also, the MSSIM values nearer to at least 

indicate higher qualities for the approximate output image. 

 

As the results show, within the case of the positive 

numbers, the mean average of PSNR (MSSIM) of the 

proposed multiplier factor is over 43 dB (0.99). Although, 

within the case of negative numbers, the quality of the 

pictures is lower, the PSNRs (MSSIM)in all  the cases are 

over 20 dB (0.91), that is suitable in several applications 

[15]. In all the benchmarks, the DSM8 provides the very 

best output quality providing an equivalent performance as 

that of the precise multiplication have the PSNR values of 

∞. The Mitchell multiplier factor supports particularly for 

the unsigned operation, and hence, its results are reportable 

just for the primary sharpening algorithmic program. The 

results reveal the bottom quality for this multiplier. Also, 

our proposed approximate multiplier yields higher (lower) 

output PSNR values compared with those of the DRUM6 

within the case of the primary (second) sharpening 

algorithmic program. For the second application of the 

smoothing, we've got utilized the subsequent equation to see 

the smoothened output image [15]:  

 

        
 

  
∑ ∑                             

 

    

 

    

                                      
 

Here, again X(i, j ) [Y (i, j )] is the pixel of the i th 

row associated j th column of input (output) image and 

Mask Smoothing is an n × n constant smoothing matrix 

given by one   

  

 
 

Because each constant is positive, all the three 

Roba multiplier architectures leads to a similar output image 

quality. Because the results reveal, all the PSNRs (MSSIMs) 

are on 40 (0.99) demonstrating little errors for the proposed 

multiplier. The output quality of the Roba altogether the 

benchmark pictures is best than those of the DRUM6 and 

Mitchell multipliers. However, like the sharpening 

application, the DSM8 number provides the best output 

quality. 

A. Proposed System Results: 

 

 
 

Fig2. Design summary of proposed system 

 
Fig3. Simulation results 

 
Fig4. Synthesis report 

 

Table 1.Comparison Table 

Parameter Existing 

System 

Proposed 

System 

Delay(ns) 38.26 23.94 

No. of LUTs 437 112 

No. of I/o s 163 145 
 

 

5. CONCLUSION 

 

In this paper, we tend to plan a high speed and 

energy economical approximate multiplier factor referred to 

as Roba multiplier factor. The proposed multiplier that had 

high accuracy was depending on the rounding error of the 

inputs in 2n. During this approach, the process intensive a 
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part of the multiplication was omitted rising speed and 

energy consumption at the worth of a tiny low error. The 

proposed approach was applicable to each signed and 

unsigned multiplications. Three hardware implementations 

of the approximate multiplier including both one for the 

unsigned and two for the signed operations were mentioned. 

The efficiencies of the proposed multipliers were evaluated 

by equivalent with those of some correct and approximate 

multipliers using totally different style parameters. The 

results discovered that, in most (all) cases, the Roba 

multiplier architectures outperformed the corresponding 

approximate (exact) multipliers. Also, the efficiency of the 

proposed approximate multiplication approach was studied 

in two image process applications of sharpening and 

smoothing. The comparison discovered identical image 

qualities as those of accurate multiplication algorithms. 
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